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We will derive the value of this sum for all x ∈ R≥0 using fourier transforms.

Proof. First consider the convolution of an impulse train and a carefully chosen
sinc wave, where k is some positive real number.
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Note that a convolution in the time domain is a product in the frequency
domain. So,
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Note that for all n such that |n| > k

π
, the rect function effectively “zeroes

out” the delta centered at w = n. Since these deltas are centered at discrete

values of n, |n| can be at most

⌊
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⌋
. Thus,
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Y (ω) = π

⌊k/π⌋∑
n=−⌊k/π⌋
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For n ̸= 0, this is just the fourier transform of a sum of cosine waves. We
take the inverse fourier transform of Y (ω) to find y(t):
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And this must be equal to the earlier result (1), when we simply took the
convolution instead. So,
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Which is an intriguing result by itself.
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To get the desired summation, simply plug in t = 0 into equation (2) and
use the fact that sinc is an even function.
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Since k is just some positive real number, we can let x = 2k. Then,
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