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We will derive the value of this sum for all x € R>¢ using fourier transforms.

Proof. First consider the convolution of an impulse train and a carefully chosen
sinc wave, where k is some positive real number.

y(t) = i 5(t727rn)*§sinc (it)
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Note that a convolution in the time domain is a product in the frequency

domain. So,
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Note that for all n such that |n| > —, the rect function effectively “zeroes
out” the delta centered at w = n. Since these deltas are centered at discrete

values of n, |n| can be at most | —|. Thus,
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For n # 0, this is just the fourier transform of a sum of cosine waves. We
take the inverse fourier transform of Y (w) to find y(t):

y(t) = F 1 (Y (w))
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And this must be equal to the earlier result (1), when we simply took the
convolution instead. So,

Lk/7] o0

+ ) cos(nt) :% > sinc <it2kn> (2)

n=1 n=-—00

| =

Which is an intriguing result by itself.



To get the desired summation, simply plug in ¢ = 0 into equation (2) and
use the fact that sinc is an even function.
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Since k is just some positive real number, we can let x = 2k. Then,
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