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First, let’s define the notation to be used in this document. If f € L*(R), we define the Fourier transform f
of f by
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Let f € L'(R). We define Pf(z) = >, ., f(z + k). Then Pf € L'(T) and ﬁ?f(k) = f(k) for all k € Z by
Theorem 8.31 in Folland’s Real Analysis.
Now we state and prove a special case of the Poisson Summation formula. The conditions stated in Folland’s
Real Analysis don’t quite hold for the function I will define later in this document so I will prove a weak
version that works for our purposes here.

Theorem 1. Let f € L'(R) such that Pf is continuous at 0 and Pf € BV(T). Then
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Proof. By Theorem 8.43 in Folland, Pf(0) = > >° 16? (n). Plugging in definitions, we get
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Now, we proceed with calculating the desired sum.

Theorem 2. If z € R such that x # 27k for some nonzero integer k, then
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Proof. Let f.(t) = x|-z 2], the characteristic function of [—5-, 5].
Clearly f,(t) € L', and so
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by a routine application of Euler’s formula.

It’s obvious that the conditions for Theorem 1 hold: Pf can only take on finitely many values, so it is of
bounded variation, and continuity at 0 holds whenever z is not a nonzero multiple of 2. So by Theorem 1,
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whenever x # 27k, k € Z \ {0}. On the left, we have f,(n) = 1 whenever |n| < £

5=, and zero otherwise. So
fz(n) is nonzero for precisely 1 + 2 - [ 5= | different values of n. Then,
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So we are done.
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